Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon.

نویسندگان

  • D Chester Upham
  • Vishal Agarwal
  • Alexander Khechfe
  • Zachary R Snodgrass
  • Michael J Gordon
  • Horia Metiu
  • Eric W McFarland
چکیده

Metals that are active catalysts for methane (Ni, Pt, Pd), when dissolved in inactive low-melting temperature metals (In, Ga, Sn, Pb), produce stable molten metal alloy catalysts for pyrolysis of methane into hydrogen and carbon. All solid catalysts previously used for this reaction have been deactivated by carbon deposition. In the molten alloy system, the insoluble carbon floats to the surface where it can be skimmed off. A 27% Ni-73% Bi alloy achieved 95% methane conversion at 1065°C in a 1.1-meter bubble column and produced pure hydrogen without CO2 or other by-products. Calculations show that the active metals in the molten alloys are atomically dispersed and negatively charged. There is a correlation between the amount of charge on the atoms and their catalytic activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Decomposition of Methane and Ethylene into the Carbon and Hydrogen

The role of nickel as catalyst on the conversion of methane and ethylene in a gas phase flow reactor in the absence of oxygen is studied. In this study, nickel in its different forms is used as catalyst. The role of pressure, flow rate, and temperature on the conversion of feed gases is investigated. The experiments have been carried out in the presence and absence of the catalysts to measure t...

متن کامل

Investigation of the catalytic performance and coke formation of nanocrystalline Ni/SrO-Al2O3 catalyst in dry reforming of methane

In this study, nickel catalysts supported on mesoporous nanocrystalline gamma alumina promoted by various strontium contents were prepared by the impregnation method and employed in dry reforming of methane (DRM). The prepared catalysts were characterized using N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR,) and oxidation (TPDTPO), X-ray diffraction (XRD), and scannin...

متن کامل

Catalytic and Non-catalytic Conversion of Methane to C2 Hydrocarbons in a Low Temperature Plasma

The direct conversion of methane to C2 hydrocarbons, in a quartz tube reactor enforced by a DC corona discharge, was investigated at atmospheric pressure. The process was carried out in the presence of metal oxide catalysts of Mn/W/SiO2, Mn/W/SiO2 (tetraethyl orthosilicate, TEOS), and Mn/W/CNT (supported on carbon nanotubes). The total yield to C2 hydrocarbons in the presence of metal oxide cat...

متن کامل

بررسی تولید گاز سنتز در راکتور پلاسما گلایدینگ به روش اکسیداسیون جزئی متان

Synthesis gas is a mixture of hydrogen and carbon monoxide which is used in many chemical and metallurgy processes and is the main intermediary for some chemical compounds like methanol and ammonia, liquid fuels and solvents. Various methods of synthesis gas are available and partial oxidation of methane is one of them. One of the newest techniques is to use plasma reactors for this purpose whi...

متن کامل

Non-oxidative conversion of methane to aromatics over modified zeolite catalysts by transitional metals

The activity of different transitional metals over modified H-ZSM-5 catalysts for methane conversion to aromatics was compared. The first group of catalysts was Mo-impregnated H-ZSM-5 zeolites with 1, 3 and 6 wt% of Mo. The second group was M(3 wt%)- impregnated H-ZSM-5 (M: Ag, Cd, Cr, Mo, Zn and Mn). The catalytic activity of the first group was investigated at 600, 700 and 800 °C and gas hour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 358 6365  شماره 

صفحات  -

تاریخ انتشار 2017